AM Home

am@astronomija.co.yu

M. Milošević
m.milan@EUnet.yu

Nastanak
Sunčevog
sistema

Sadržaj
Uvod
1.1. Od Eratostena
do Njutna

2. RAĐANJE KOSMOGONIJE
2.1. Podela teorija
3. SUNCE
4. HIPOTEZE O
NASTANKU PLANETA

4.2. Capture Thery
4.3. Akreciona hipoteza
4.4. Alfvenova teorija
5. NASTANAK SISTEMA ZEMLJA – MESEC
6. NASTANAK KOMETA
7. ŠTA NAS DALJE
ČEKA?

8. ZAKLJUČAK

 

Sadržaj AM

  

Milan Milošević                                     Nastanak Sunčevog sistema

 
4.3.   AKRECIONA HIPOTEZA
Sl. 12. Shematski prikaz akrecione teorije

Sl. 12. Shematski prikaz akrecione teorije

Akreciona hipoteza dokazuje da je su Sunčevi “sateliti” postepeno nastajali od hladnih, čvrstih čestica koje su se sudarale i sjedinjavale. Ovaj proces rasta, kroz slučajne sudare, od mikroskopskih zrna prašine do asteroida i planeta trajao je oko 250 miliona godina (do ovog podatka došlo se na osnovu analize radioaktivnih gasova na meteorima). Zrna prašine (silikati, metali, karbonati i hidrokarbonati) prirodni su sastojak medjuzvezdanog materijala. Tu mogu da se nađu i još neki molekuli, kao što su amonijak, vodoniksulfat, formaldehid, cijanovodonik, jednostavni alkoholi, ugljenmonoksid, i mnogi drugi. Još je važno napomenuti da eksplozije supernova međuzvezdanoj materiji pridodaju i još mnoge radioaktivne elemente u mnogo većoj količini nego sto se oni danas nalaze u Sunčevom sistemu.

Sl. 13. Asteroid Kastalija – dokaz akrecione teorije

Sl. 13. Asteroid Kastalija – dokaz akrecione teorije

Materijal koji danas izgrađuje Sunčev sistem izdvojio se iz međuzvezdanog gasa pre oko 6–7 milijardi godina kao relativno gust i taman prvobitni oblak gasa i prašine koji je polako "popuštao" pod delovanjem gravitacionih sila. Ovaj oblak nazivamo solarna maglina. Kako se solarna maglina sve više i više sažimala, zakon održanja momenta impulsa terao je da ona rotira sve brže i brže (iz istog razloga iz kog se balerina vrti sve brže i brže, dok skuplja ruke uz telo, izvodeći piruetu). Ovakva rotacija primorala je ovaj oblak gasa da sve više i više poprima oblik diska. Najgušći deo oblaka bio je u centru rotirajućeg diska. Ova velika koncentracija materijala izazvala je da centralni deo gasovitog diska počne da se sažima brže od spoljnih delova. U tom delu je počelo da se stvara Sunce. Na osnovu današnje rotacije Sunca oko svoje ose možemo da vidimo u kom smeru je rotirala ova solarna maglina. Kako se Sunce sažimalo ono je za sobom ostavljalo gas i prašinu koji su nastavljali da se kreću oko Sunca u istom smeru kao i prvobitni disk. Konačno se sakupilo dovoljno materijala da nastanu planete, koje će kasnije rotirati oko Sunca u istom smeru  kao i prvobitan disk solarne magline (tj. u istom smeru u kom Sunce rotira oko svoje ose).

Gravitaciono sažimanje i “ravnanje” do koga je dolazilo usled rotacije diska (zajedno nazvano dinamički kolaps) materije u preostalim delovima prvobitnog diska izazvalo je hemijske reakcije gasa, iz kojih su proizilazili novi, složeniji molekuli. Nekad su mikroskopske čestice prašine u ovom oblaku igrale ulogu katalitičkih površina, gde su se ove reakcije odigravale. Istovremeno, dinamički kolaps praiskonskog oblaka izazvao je da zrnca prašine počnu da se sudaraju sve češće i češće. Kao posledica tih sudara ova “zrnca” su se sjedinjavala i postajala sve veća i veća. Njihovoj strukturi su se, takođe, pripajali i neki od već pomenutih molekula.  Za oko 250 miliona godina ova zrnca su dovoljno narasla, tako da su to tada bili objekti veličine između 10 i 50 kilometara u prečniku. Ovi objekti nazivani su planetezimali. Postoje neke teorije po kojima su ovi objekti bili veličine do 1000 km u prečniku, ali, u suštini, ne postoji jedinstveno mišljenje o veličini ovih objekata.

Povremeno su se ovi planetzimali sudarali velikom brzinom i raspadali su se na manje delove. Veruje se da veliki deo meoroita koji pogađaju Zemlju (meteoriti), čak i danas, nastaje upravo u ovakvim sudarima koji se i dalje odigravaju u asteroidnom pojasu. Međutim, povremeno se dva planetzimala sudare manjim brzinama i sjedine se. Tako nastaju veliki objekti, prečnika većeg od 100 kilometara. Rezultat sporih sudara između dva planetzimala ponekad može da bude telo čiji je rast, iz nekih razloga, prestao. Istraživanja asteroida su potvrdila postojanje bar dva ovakva objekta. Jedan je Castalia, a drugi Tautatis. Postojanje ovakvih objekata je potvrda teorije da su planete nastale na ovakav način, rastom sitnijih čestica. Postoji mogućnost da su objekti kao što su Castalia i Tautatis nastali kasnije, na stabilnoj orbiti oko Sunca, kada su planete pokupile većinu planetzimala.

Objekti koji dostignu prečnik od 250 km sjedinjavanjem u sudarima postižu kritičnu masu i ponekad se nazivaju protoplanete. Prilikom kretanja po orbitama oko pra-Sunca protoplanete sve više i više počinju da rastu privlačeći svojom sve jačom gravitacijom okolna sitnija tela na koja nailaze na svom putu. Što veću masu prikupe, veća je i njihova gravitaviona sila, a samim tim i brzina kojom rastu.  Ovaj proces rasta naziva se gravitaciono čišćenje. Priliv materije na protoplanete sa vremenom je postao toliko intenzivan da je energija koja se oslobađala udarima ovih tela o planetu topila njenu površinu do dubine od nekoliko kilometara.

U isto vreme unutrašnjost ovih tela zagrevala je energija koja se oslobađala raspadanjem “zarobljenih” radioaktivnih elemenata. Iz pretpostavljene količine izotopa sa kratkim periodom poluraspada, kao što su Al26, I129 i Pu244 izračunato je da je količina oslobođene energije bila toliko velika da je izazivala topljenje unutrašnjosti protoplanete ako je ova bila veća od 50 km u prečniku. Sa druge strane, ako je prečnik protoplanete bio manji od 50 km ova toplota je izlazila kroz površinske slojeve suviše brzo i nije mogla da izazove topljenje. Veruje se da su ova dva izvora toplote, gravitaciono sakupljanje sitnijih tela i radioaktivni raspad, dovela do toga da su veća planetarna tela bila u potpunosti otopljena. U takvom stanju gravitaciono razdvajnje elemenata je proizvelo razlike u hemijskom sastavu današnjih planeta. Teži elementi su padali ka centru tela, dok su lakši isplivavali u površinske slojeve. Takođe, gravitacija je prouzrokovala da ova tela postanu sfernog oblika, tj. delimično spljošteni sferoidi, zato što su rotirali velikom ugaonom brzinom. Manji objekti čija se površina nije otopila zadržali su se u različitim oblicima, kao rezultat slučajnih sudara u kojima su nastajali.

Na kraju planetarna tela su dostigla konačnu veličinu kada su u sebe privukla većinu manjih, čvrstih tela iz svoje okoline ili su manja tela zauzela svoje stabilne orbite van domašaja gravitacionog uticaja ovih novorođenih planeta. Ova mala tela su nam danas poznata kao planetoidi ili asteroidi. Njih i danas ima veoma mnogo u Sunčevom sistemu.

Sl. 14. Izgeld Meseca:
Sl. 14. Izgeld Meseca: a) pre 4 milijarde godina, intenzitet bombardovanja opao, kora očvrsnula; b) pre 3 milijarde godina, lava se probila na površinu i ispunila ravnice, nastala "mora"; c) Mesec danas

Kako se količina materijala koji je planeta privlačila na sebe smanjivala, površina planeta je počela da se hladi i očvršćava. Svaki sledeći pad novog materijala, ili bolje rečeno meteorita, na površinu planete uzrokovao je nastanak trajnih kratera na površini planeta Zemljinog tipa. Sa sigurnošću možemo da zaključimo da je ovaj proces počeo pre oko 4,6 milijardi godina. Do ovog zaključka dolazimo na osnovu procene starosti najstarijih stena na površini Meseca.

Dalje hlađenje planeta izazvalo je pucanje njihove kore. Rascepi koji su nastajali na ovakav način opet su omogućili da usijana lava iz unutrašnjosti izađe na površinu i ispuni niže visinske oblasti. Veruje se da su, ustvari, takozvana mora na Mesecu, ostalim satelitima i Merkuru ustvari ravnice lave nastale na ovaj način. Priliv dodatne materije i bombardovanje površina planeta meteoritima okončano je pre oko 3,5 milijardi godina. Do ovog podatka došlo se na osnovu procene starosti stena koje je "Apolo" doneo sa Mesečeve površine.

Tela koja su bila manja od 250 km u prečniku nisu iskusila izrazito gravitaciono “čišćenje” i na njima nije došlo do topljenja površinskih slojeva. Međutim, ako su ona bila veća od 50 km u prečniku dolazilo je do topljenja u njihovoj unutrašnjosti pod uticajem energije nastale tokom raspada radioaktivih elemenata koji su tu bili koncentrisani. Ovo je ipak omogućilo gravitaciono izdvajanje pojedinih elemenata u različite dubinske slojeve ovih tela.

Na kraju i ova tela su se ohladila i očvrsla. Njihova struktura je bila slojevita i slojevi su se razlikovali u hemijskoj strukturi. Ako bi se dva ovakva tela sudarila i raspala u sitnije delove, nastali bi meteoridi različitog hemijskog sastava. Ova teorija nastanka meteorida različite hemijske strukture naziva se roditeljska teorija (parent-body theory).

Kako se Sunce razvijalo ono je postajalo sve manje i sve toplije. Pre 5 milijardi godina Sunce je bilo veliko kao orbita Plutona. U to vreme planete nisu mogle da postoje. Kako je Sunce postajalo toplije pritisak zračenja i solarni vetar oduvali su sve lakše gasove, kao što su vodonik i helijum, daleko od unutrašnjih delova Sunčevog sistema. Zbog toga danas postoji manjak tih elemenata u strukturi planeta Zemljinog tipa. Sa druge strane, planete Jupiterovog tipa bile su dovoljno daleko od Sunca,  tako da su bile u mogućnosti da zadrže svoju prvobitnu atmosferu. Ovo objašnjava jednu od osnovnih razlika između ova dva tipa planeta.

U spoljnim delovima Sunčevog sistema, gde je temperatura bila prilično niska, moglo je da ostane više isparljivih elemenata, kao što su voda ili ugljendioksid, u zaleđenom stanju. Ovi zaleđeni elementi vremenom su se dospeli na površinu satelita velikih planeta. U stvari, Pluton i njegov satelit Haron sagrađeni su od velike količine leda. Komete, koje su takođe sastavljene od velike količine leda, nastale su akrecijom (slepljivanjem) u najudaljenijim, spoljnim delovima Sunčevog sistema. Procenjeno je da postoji oko 100 milijardi  ovakvih sfernih tela u omotaču oko Sunca, na daljini od oko 50.000 AJ. Ovaj omotač se naziva Ortov oblak.

Druga lokacija gde su takodje otkrivena kometolika jezgra naziva se Kuiperov pojas. Otkriveno je da se on prostire iza orbite Plutona do neke daljine manje od 50.000 AJ. Procenjeno je da Kuiperov pojas sadrži nekoliko hiljada malih ledenih tela. Kometolika jezgra u ovom pojasu radije se kreću kao disk nego kao sverni oblak. Do danas otkriveno je više od 50 individualnih objekata koji se kreću po tačno određenim putanjama u Kuiperovom pojasu.

 Sadržaj | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 >>

vrh