AM Home

am@astronomija.co.yu

 

Albert Ajnštajn
Kratka biografija

Relativnost:
Neki računi

Sadržaj AM

 

 

 Milan Milošević                                                                                                           Ajnštajn za početnike

[1 | 2 | 3 | 4 | 5 | 6 | 7  | 8 | 9 | 10 | 11 ]

3. POČECI TEORIJE RELATIVNOSTI

I Aristotel i Njutn verovali su u apsolutno vreme. Smatrali su da je moguće izmeniti interval između dva događaja, odnosno da bi ovo vreme bilo isto bez obzira na to ko ga meri, pod uslovom da se koristi dobar časovnik. Vreme je bilo potpuno zasebno i nezavisno od prostora. Za većinu ljudi ovo bi bilo zdravorazumsko stanovište. Pa ipak, ljudi su vremenom morali da promene svoja viđenja prostora i vremena. Iako su, kako izgleda, zdravorazumske predstave sasvim na mestu sa stvarima kao što su jabuke ili planete koje se kreću srazmerno lagano, one potpuno gube valjanost kada su posredi stvari koje se kreću brzinom svetlosti ili sasvim blizu nje.

3.1 Merenje brzine svetlosti

3.1.1 Merenje brzine zvuka

Osnova teorije relativnosti zasniva se na karakterističnom ponašanju svetlosnih talasa. Za teoriju relativnosti jedna od najvažnijih osobina svetlosti je njena brzina. Kako je po svojoj prirodi svetlost elektromagnetni talas, onda je, ustvari, brzina svih elektromagnetnih talasa jednaka brzini svetlosti. Ali pre nego što su uspeli da izmere brzinu svetlosti, ljudi su prvo izmerili brzinu jedne vrste malo jednostavnijih, tj. mehaničkih talasa, odnosno prvo je izmerena brzina zvuka.

Očigledno je da su naši pretci bili svesni činjenice da kad nešto proizvede buku zvuk se prenosi od mesta nastanka zvuka do uha slušaoca. Ovaj zaključak je donet na osnovu zapažanja da što je neko bio dalje od munje bilo je potrebno više vremena da čuje udar groma. Bez obzira što je ova pojava bila dobro poznata niko nije uspeo da izmeri brzinu zvuka do Srednjeg veka.

Jedno od prvih merenja brzine zvuka izveo je Francuz Mersen (1588 – 1648). Mersen je brzinu zvuka odredio na jedan vrlo jednostavan način. Na rastojanju od nekoliko kilometara postavio je top iz kojeg je njegov pomoćnik opalio. Mersen se za to vreme nalazio na svom osmatračkom položaju odakle je jasno mogao da vidi blesak topa u trenutku opaljivanja. Sve što je trebalo da uradi je da izmeri vremenski interval koji protekne između bleska i trenutka kad čuje zvuk eksplozije. Ovaj interval je odredio brojanjem punih oscilacija klatna, pošto je u to doba klatno bila jedina poznata "štoperica". Znajući vreme potrebno klatnu za jedan zamah izračunao je ukupno vreme potrebno zvuku eksplozije da stigne do njega, a zatim tim vremenom podelio rastojanje, na taj način dobio je brzinu zvuka. Njegov rezultat je bio vrlo precizan, iznosio je 1130 kilometara na čas. Danas mnogo tačnije metode daju vrednost od 1210 km/h. U Mersenovo vreme ovo se smatralo vrlo velikom brzinom pošto je tada jedna od najvećih poznatih brzina bila brzina trkačkog konja koja je iznosila oko 64 km/h.

3.1.2 Galilejevi pokušaji merenja brzine svetlosti

Svima je vrlo dobro poznato šta se dešava kad čovek uđe u mračnu sobu i upali pritisne prekidač da upali sijalicu – u istom trenutku paljenja prekidača sijalica počinje da svetli a svetlost sa nje trenutno stiže do naših očiju. Takođe je dobro poznato šta je sijalica izvor svetlosti i da sva svetlost koja obasjava sobu potiče od sijalice. Lako se dolazi do zaključka da bi čovek video svetlost ona mora da pređe put od sijalice do njegovih očiju. Čovekova čula kazuju mu da vidi svetlost u istom trenutku paljenja prekidača, ali da li se svetlost stvarno prenosi beskonačnom brzinom, ili je ta njena brzina samo toliko velika da našim čulima samo deluje da se sve dešava trenutno?

U Srednjem veku bilo je dosta rasprava o tome da li je brzina svetlosti konačna ili je beskonačna, pri čemu je i tako istaknut naučnik kao Dekart (1596 – 1650) tvrdio da je ona beskonačna, dok je Galilej (1564 – 1632) tvrdio da je ona konačna.

Da bi potvrdio da je on u pravu Galilej je probao da eksperimentom odredi brzinu svetlosti. Ovaj eksperiment probao je da izvede na sličan način kao što je Mersen odredio brzinu zvuka. Jedne tamne noći poslao je svog pomoćnika sa upaljenim fenjerom prekrivenim kofom na jedan udaljeni brežuljak. Galilej je takođe imao fenjer pokriven kofom. Kada su obojica bili na svojim mestima, Galilej je podigao kofu sa svog fenjera i pustio svetlost da putuje ka pomoćniku, zadatak pomoćnika bio je da u trenutku kad ugleda svetlo sa Galilejevog fenjera odmah otkrije svoj fenjer. Svetlosni zraci iz pomoćnikovog fenjera stigli bi do Galileja koji je merio ukupno vreme od kad je podigao kofu do prijema svetlosnih zraka iz drugog fenjera. Mislio je da može na osnovu rastojanja između sebe i pomoćnika i izmerenog vremena da odredi brzinu svetlosti. ali tu je nastupio veliki problem. Svaki put kad bi ponovio eksperiment Galilej je dobijao različite rezultate, pa iz tih rezultata nije mogao da izvede nikakav zaključak.

Tek mnogo godina posle Galileja bilo je jasno zašto Galilejev pokušaj nije uspeo: vreme koje je bilo potrebo Galileju i njegovom pomoćniku da reaguju na uočenu svetlost fenjera bilo je mnogo veće u odnosu na vreme potrebno svetlosti da prevali put između njih dvojice, odnosno ako pretpostavimo da je za njihovu reakciju bila potrebna jedna sekunda za to vreme svetlost bi 14 puta obišla Zemlju.

Iako je ova metoda izgledala ispravna, bila je tako uzaludna kao kad bi puž pokušavao da uhvati muvu.

3.1.3 Remerova astronomska metoda

Posle Galilejevog neuspeha bilo je jasno da je za određivanje brzine svetlosti neophodno merenje vremena prolaska svetlosnog zraka preko velikog rastojanja, većeg od obima Zemlje, ili da se koristi kraće rastojanje ali pod uslovom da se raspolaže preciznim časovnikom. Ubrzo posle neuspeha Galileja javila se ideja o jednoj astronomskoj metodi, i kao ironija, jedno od Galilejevih ranih otkrića u astronomiji omogućilo je uspeh te metode.

Kao što je poznato Galilej je 1610. god. prvi put upotrebio teleskop u astronomiji i pomoću njega otkrio četiri najveća Jupiterova satelita (kasnije nazvana Galilejevi sateliti). Kao i Mesec oko Zemlje, svaki od njih putuje svojom orbitom oko planete, svaki u svom konstantnom vremenskom intervalu, nazvanom period.

Danski astronom Olaf Remer je 1675. godine izmerio periode ova četiri satelita, ali je dobio drugačije rezultate kada ih je opet izmerio nakon šest meseci! Remer je izmerio vremenski interval potreban jednom od Jupiterovih meseca od trenutka izlaska meseca iz senke Jupitera do njegovog dolaska ispred Jupitera, a zatim natrag u isti položaj. Odredio je da taj period iznosi približno 42,5 sati kada se Zemlja nalazi u tački svoje orbite koja je najbliža Jupiteru.

Nakon šest meseci Zemlja će se naći na suprotnoj strani orbite oko Sunca, tj biće na najvećem rastojanju od Jupitera, a Jupiter će se na svojoj putanji pomeriti zanemarljivo malo. Remer je sada takođe očekivao da se pomračenja Jupiterovog meseca opet dešavaju u intervalima od po 42,5 sati, ali situacija je bila malo drugačija. On je našao da se pomračenja dešavaju sa sve većim i većim zakašnjenjem kako se Zemlja udaljavala od Jupitera, i nakon šest meseci, kada je ona bila najdalja, ovo zakašnjenje je iznosilo 1000 sekundi.

Jedini logičan zaključak koji je Remer mogao da donese bio je da ovo dodatno vreme predstavlja vreme potrebno svetlosti da pređe dodatno rastojanje između Zemlje i Jupitera, odnosno da pređe rastojanje preko prečnika Zemljine orbite. U to vreme verovalo se da prečnik Zemljine orbite iznosi 284 miliona, umesto tačnih 300 miliona, kilometara tako da su Remerovi podaci dali suviše malu vrednost za brzinu svetlosti. Ipak, Remerova metoda je ušla u storiju kao prvo uspešno određivanje brzine svetlosti.

3.1.4 Fizova zemaljska metoda

Prvo određivanje brzine svetlosti bez upotrebe astronomskih metoda izveo je Fizo u 1849. godini. U osnovi ovaj metod je podsećao na Galilejev pokušaj ali uspeo je da prevaziđe jedini nedostatak Galilejevog eksperimenta – imao je mogućnost tačnog merenja kratkog vremenskog intervala u kome svetlosni zrak prelazi relativno kratko rastojanje na Zemlji.

Aparatura za ovaj eksperiment sastojala se od jednog zupčanika koji je okretan sistemom kotura i tegova. Izvor svetlosti bila je upaljena sveća. Na rastojanju od 8 km od sveće nalazilo se jedno ravno ogledalo.

U slučaju kada se kotur ne okreće svetlost sveće prolazi između dva zubaca, prelazi put od 8 km do ogledala i vraća se natrag istim putem, opet prolazi kroz isti prorez i stiže do oka posmatrača, koje se nalazi iza sveće.

Ako bi se sada zupčanik zarotirao svetlosni snop koji polazi od sveće bio bi iseckan zupcima koji prolaze ispred sveće. Rezultat ovoga biće niz snopova poslatih ka ogledalu, a dužina svakog snopa zavisiće od brzine okretanja zupčanika; što se zupčanik brže okreće snopovi bi bili kraći.

Svi ovi snopovi svetlosti putuju do udaljenog ogledala, od njega se odbijaju i istim putem se vraćaju nazad. Kada svetlosni snop stigne nazad do zupčanika on neometano može proći do oka posmatrača, ali isto tako može naići na prepreku, odnosno zubac zupčanika, i tu završiti svoje 16 km dugo putovanje. Jasno je da to da li će posmatrač da vidi svetlosni snop ili ne zavisi od brzine okretanja zupčanika – ako se zupčanik okreće sporo zubac će zakloniti dolazeći svetlosni snop, ali ako je njegova rotacija dovoljno brza svetlost će proći kroz prorez iza zubca i posmatrač će moći d aga vidi.

Fizo je baš na ovakav način odredio brzinu svetlosti. Eksperiment je počeo tako što je na početku zupčanik mirovao i on je nesmetano mogao da vidi svetlosni snop koji se vraćao. Kasnije je počeo sve više i više da ubrzava zupčanik i svetlosni snop se izgubio. Kada se snop svetlosti opet pojavio, Fizo je zabeležio brzinu rotacije zupčanika. Znao je da svetlost pređe put od 16 km za vreme koje je potrebno da jedan zubac bude zamenjen sledećim a to vreme je mogao da odredi znajući brzinu rotacije zupčanika koju je već izmerio.

Na ovakav način Fizo je dobio da brzina svetlosti iznosi 313.870 km/s, što je za oko 5% više nego prava vrednost, ali bilo je to vrlo precizno merenje za to vreme kada je izvedeno.

3.1.5 Majkelsonovo precizno merenje

Sigurno najpoznatije merenje brzine svetlosti izvršio je Majkelson 1926. godine. Princip eksperimenta je sličan principu koji je koristio i Fizo, sa tom razlikom što je umesto rotirajućeg zupčanika Majkelson koristio obrtno, mnogostrano ogledalo za seckanje svetlosnog talasa u pojedinačne zrake. Mnogostrano ogledalo je bilo oblika šestougla a na svakoj njegovoj strani bilo je postavljeno po jedno ravno ogledalo; ogledalo je pokretao elektromotor pa je brzina rotacije mogla precizno da se podešava.

Na početku eksperimenta sistem ogledala miruje. Svetlost polazi sa sijalice, neometano prolazi paralelno jednoj strani ogledala, stiže do udaljenog ogledala, odbija se, i vraća se nazad istim putem do oka posmatrača. Ako se ogledalo pokrene da rotira nastupiće dve slične situacije kao i kod Fizovog zupčanika – ako ogledalo rotira nedovoljno brzo, sledeća strana ogledala neće zauzeti dobar položaj da omogući odbijenom svetlosnom snopu da stigne do posmatrača, ali ako bi brzina rotacije bila dovoljna sledeće ogledalo bi se našlo u odgovarajućem položaju i svetlosni zrak bi stigao do posmatrača.

U slučaju kada posmatrač uspe da vidi svetlost koja se odbila sa udaljenog ogledala obrtno ogledalo ostvari jednu šestinu obrta za vreme koje je potrebno svetlosti da ode i vrati se nazad. Kako je poznata brzina rotacije, lako se određuje vreme putovanja svetlosti, a kada su poznati vreme i pređeni put vrlo je jednostavno odre3diti i brzinu.

Majkelson je radi veće preciznosti merenja pored šestostranog ogledala koristio i ogledalo sa 8, 12 i 16 strana. Sva ta ogledala bila su postavljena na planini Maunt Vilson u Kaliforniji. Udaljeno ravno ogledalo bilo je postavljeno na planini Maunt San Antonio, udaljenoj približno 35,5km. Iz razloga što je tačnost rezultata mnogo zavisila od tačnosti merenja rastojanja između ovih ogledala, Služba za obalska i geodetska premeravanja (U.S. Coastal and Geodetic Survey) izmerila je to rastojanje isključivo za Majkelsonov eksperiment sa greškom manjom od 5 cm. Zahvaljujući preciznosti sa kojom je obavljana svaka etapa eksperimenta rezultati se mogu smatrati tačnim do malog dela jednog procenta. Kao rezultat ovog i kasnije izvedenih eksperimenata mi danas znamo da je brzina svetlosti približno 300.000 km/s (ili preciznije 299.792.458 m/s).

Ajnštajn za početnike

< Prostor i vreme: Galilej Potraga za etrom >
[1 | 2 | 3 | 4 | 5 | 6 | 7 |8 | 9 | 10 |11]

(maj 2002.)


| Home | Sadržaj | Galaksija | Sunčev sistem | Teorija i praksa |
| Instrumenti | Istorija i tradicija  | Efemeride 2002 |

vrh