|
Paralaksa | 1 | 2 | 3 | 4 | 5 | 6 | Sjajnost i magnitude Kad pogledate zvezde lako uočavate da one sijaju različitim sjajem. Pre više od 2.000 godina Haparh (Hipparcus) ih je klasifikovao prema sjaju u šest kategorija tj. magnituda. Zvezde prve magnitude su najsjajnije, a iz šeste najbleđe. U devetnaestom veku astronomi su pečeli preciznije da mere magnitude. Tada su uvideli da zvezde imaju kontinuiran sjaj pa su zato uveli i frakcione magnitude. Na primer, sada se zna da Deneb ima magnitudu od 1,26 a u 'stara vremena' ova je zvezda bila klasificirana kao zvezda prve magnitude. Takođe se utvrdilo da neke od zvezda klasifikovane u prvu magnitudu imaju mnogo veći sjaj nego što se dotada verovalo. Iz ovog razloga su se uvele negativne magnitude. Najsjajnija zvezda, Sirius, ima magnitudu -1,42. Pošto se zvezde nalaze na različitim rastojanjima ne može se odrediti koja je sjajnija, već samo koja izgleda sjajnija. Prividna magnituda se nam govori koja zvezda izgleda sjajnija, a apsolutna magnituda koja je stvarno sjajnija. Kada se zna rastojanje do neke zvezde može da se izračuna koliki bi bio sjaj zvezde kada bi se našla na nekoj standardnoj udaljenosti. Astronomi su odlučili da ta standardna udaljenost iznosi 10 pc i definirali su apsolutnu magnitudu (M) kao prividnu magnitudu koju bi imala neka zvezda kada bi se nalazila na udaljenosti od 10 pc. Kada se zna prividna magnituda i rastojanje pomoću formule
može da se izračuna apsolutna magnituda. U gornoj jednačini M je apsolutna magnituda, m je prividna magnituda, a d rastojanje. Ono šta oko registruje kao razliku u sjaju između dve sukcesivne magnitude, odgovara konstantnom odnosu njihove sjajnosti. Tako, zvezda iz prve magnitude je 2,5 puta sjajnija od zvezde iz druge magnitude, a ova iz druga magnituda ja 2,5 puta sjajnija od zvezde iz treće magnitude. Zvezda iz prve magnitude je 100 puta sjajnija od zvezde iz 6. magnitude. Znači, ako se dve zvezde razlikuju međusobno za jednu magnitudu, onda ona sa manjom magnitudom ja 2,512 puta sjajnija od one sa većom magnitudom. Paralaksa | 1 | 2 | 3 | 4 | 5 | 6 | U nastavku: Spektroskopska paralaksa (jun 2004.)
|