AM Home

am@astronomija.co.yu

 

Albert Ajnštajn
Kratka biografija

Relativnost:
Neki računi

Sadržaj AM

 

 

 Milan Milošević                                                                                                           Ajnštajn za početnike

[1 | 2 | 3 | 4 | 5 | 6 | 7  | 8 | 9 | 10 | 11 ]

Specijalna teorija relativnosti:
[ 1 | 2 | 3 | 4 | 5 | 6 | 7 ]
Kontrakcija dužine >

4.1 Postulati Specijalne teorije

Upoznavši se sa svim problemima nastalim tokom vršenja eksperimenata u pokušaju detekcije etera Ajnštajn je izveo dva veoma značajna zaključka. Ti zaključci poznati su kao dva osnovna postulata STR, i oni su temelj na kome se gradi cela teorija.

Svi fizički zakoni izražavaju se u istom obliku u svim
sistemima koji se kreću ravnomerno pravolinijski.

Prvi postulat kaže: svi fizički zakoni izražavaju se u istom obliku u svim sistemima koji se kreću ravnomerno pravolinijski. Ovaj postulat predstavlja tzv. Ajnštajnov princip relativnosti, koji Galilejev princip relativnosti uopštava sa mehaničkih na sve fizičke zakone. Iz ovog postulata se takođe izvodi i zaključak da se eter ne može detektovati. Ajnštajn je do ovog postulata došao vrlo jednostavnim razmišljanjem.

Zamislimo čoveka koji se nalazi u vozu i posmatra vagon drugog voza koji se nalazi neposredno pored njega. Ako jedan od ova dva voza krene, čovek bi lako mogao da dođe u zabunu koji se voz zapravo kreće. Naravno, ovde je lako odrediti ko se zapravo kreće, potrebno je samo pogledati bilo koji predmet pored pruge, ali zamislimo sada nekog posmatrača u dalekoj budućnosti. Neka taj čovek krene sa Zemlje na svemirsko putovanje, i neka se on konstantno kreće brzinom od 8.000 km/h u odnosu na Zemlju. Dok on tako krstari kroz prostor i izgubi Zemlju iz vida, odjednom iza sebe opaža drugu raketu, i biva iznenađen lakoćom kojim ga ova raketa pretiče. Vozač ove druge rakete čak može da pomisli da se raketa koju zaobilazi uopšte ne kreće! Kako će ovaj "zvezdani putnik" da dokaže da se kreće? Sve što može da odredi je brzina kojom je druga raketa prošla pored njega, i ništa više od toga. Ako bi ova brzina bila 1.600 km/h može se doći do više različitih zaključaka.

Najrealniji zaključak je taj da pošto pilot zna da se on kreće brzinom od 8.000 km/h u odnosu na Zemlju, a da je druga raketa prošla brzinom od 1.600 km/h pored njega, brzina te druge rakete u odnosu na Zemlju 9.600 km/h, ali ovo ne mora biti tačno! To isto tako može da znači da se on sada kreće brzinom od 3.000 km/h a druga raketa brzinom od 4.600 km/h u odnosu na Zemlju. Ili, ma koliko to izgledalo čudno, možda se ova druga raketa uopšte ne kreće u odnosu na Zemlju a da se posmatrač kreće unazad, brzinom od 1.600 km/h!

Brzo se dolazi do zaključka da je bez korišćenja nekog "nepokretnog" predmeta radi merenja brzine posmatrača nemoguće reći ko se kreće a ko miruje, ako neko uopšte miruje. Nemoguće je napraviti neki instrument koji bi pokazivao da li se posmatrač u odnosu na nešto kreće ili ne. U stvari ako bi se posmatrač nalazio negde daleko od svih zvezda i planeta, bez ičega što bi mogao da koristi kao referentnu tačku za merenje brzine, on nikad neće saznati da li se kreće ili ne!

Ovo je bila činjenica do koje je Ajnštajn došao – svako kretanje je relativno1 (odatle i naziv teorija relativnosti). Nikada ne možemo govoriti o apsolutnom kretanju, već samo o kretanju u odnosu na nešto drugo. I uopšte se ne može reći da se neki predmet kreće tom-i-tom brzinom, već se mora reći da ima tu-i-tu brzinu u odnosu na nešto.

Lako se može zamisliti razgovor koji će se odvijati negde u budućnosti između oca i njegovog sina koji uživa u putovanju kroz vasionska prostranstva. Otac upozorava sina da svoju raketu ne vozi brže od 1600 km/h, a sin mu odgovara: "U odnosu na Sunce, tata, ili na Sirijus?"

Iz ovoga se lako zaključuje zašto stacionarni eter ne može da se detektuje. Ako bi on postojao i ispunjavao celokupnu vasionu, morao bi da miruje, njegovo mirovanje bi bilo apsolutno, a Prvi postulat upravo kaže da ne postoji apsolutno mirovanje.


[1] Ajnštajn je pojam "relativno" vrlo slikovito objasnio jednom poznatom rečenicom: "Ako držite ruku na usijanoj peći, minuti vam izgledaju kao sati, a ako ste sa lepom devojkom sati vam izgledaju kao minuti"

                

Brzina svetlosti, odnosno maksimalna brzina prenošenja interakcije, ista je u svim inercijalnim sistemima

Drugi postulat STR kaže da je brzina svetlosti, odnosno maksimalna brzina prenošenja interakcije, ista u svim inercijalnim sistemima. Ako bi se jedan dečak nalazio na platformi i bacio loptu brzinom od 24 km/h to znači da bi se lopta u odnosu na njega kretala tom brzinom bez obzira da li se platforma kreće ili ne. Ako bi se platforma kretala, na primer, prema mostu brzinom od 8 km/h a dečak baci loptu prema mostu brzina lopte i platforme će se sabrati i dati ukupnu brzinu lopte u odnosu na most, i tom brzinom će lopta udariti u most. Ako bi se platforma udaljavala od mosta a dečak opet bacio loptu ka mostu brzina lopte u odnosu na most bila bi jednaka razlici brzina platforme i lopte.

U malo složenijoj situaciji, gde ulogu dečaka igra neka daleka zvezda, mosta – teleskop na Zemlji, a ulogu lopte preuzima svetlosni talas koji putuje sa zvezde do Zemlje situacija se malo komplikuje. Svetlosni talas sa zvezde putuje brzinom od 300.000 km/s u odnosu na zvezdu. Ako bi se zvezda i Zemlja približavale relativnom brzinom od 160.000 km/s, analogno situaciji sa dečakom, očekivali bi smo da se brzine sabiraju, odnosno svetlosni talas bi trebalo da "udari" u teleskop brzinom od 460.000 km/s, i obrnuto ako se zvezda i Zemlja udaljavaju brzine bi trebalo da se oduzimaju i daju 140.000 km/s. Na ovakav način posmatrač bi odredio dve različite brzine svetlosti, i to je potpuno ispravno sa stanovišta Njutnove fizike, ali je u suprotnosti sa Drugim postulatom. Prema Drugom postulatu brzina svetlosti u oba slučaja mora da iznosi 300.000 km/s.

Iskaz ovog postulata bio je revolucionaran. Ipak, Ajnštajn ga je uzeo kao jedan od osnovnih postulata STR, bez obzira na to što je izgledalo da je u suprotnosti sa zdravim razumom, jer su svi eksperimenti navodili na taj zaključak. Verovalo se da je to jedan od osnovnih zakona vasione.

Kako su ova dva postulata bila u takvoj suprotnosti sa opštim mišljenjem tog vremena, bilo je neophodno mnogo više od njihovog predstavljanja javnosti. Jer, bez dalje potpore, oni bi samo bili interesantni a ne bi dokazivali ništa: Tako su, polazeći od ovih postulata izvedene mnoge jednačine koje su ne samo objašnjavale određene fenomene, nego su omogućavale i izvesna predviđanja, koja su kasnije bila eksperimentalno verifikovana. To je ustvari najstrožija provera svake teorije: ne samo da omogući zadovoljavajuće objašnjenje svih zagonetki nekog problema, nego da učini i potpuno nova i drugačija predviđanja koja će tek kasnije biti eksperimentalno potvrđena.

Da bi se premostila praznina između ovih postulata, koji su sami po sebi apstraktni, i jednačina koje vode do potvrde i praktičnih primena teorije, postulati su morali biti ugrađeni u fizičku situaciju podložnu eksperimentalnoj proveri. Kako se postulati odnose na predmet koji se kreće konstantnom brzinom u odnosu na posmatrača i na ponašanje svetlosnih talasa, ovo se najbolje može postići ako zamislimo posmatrača koji "opisuje" predmet koji se kreće konstantnom brzinom u odnosu na njega. Ponašanje svetlosnih talasa će uticati na opis jer je refleksija svetlosnih talasa od predmeta do posmatrača ono što omogućava posmatraču da vidi i opiše predmet. Posmatračev "opis" predmeta sastojaće se od fizičkih karakteristika koje se mere posmatračevim instrumentima (npr. dužina, masa, energija, vreme...)

Predviđanja numeričkih vrednosti vrednosti ovih karakteristika u skladu sa STR stavljaju se u matematički oblik da bi mogla da se uporede sa stvarnim merenjima.

Ako pretpostavimo da se dve identične rakete A i B kreću jedan prema drugoj konačnom brzinom. Obe rakete su opremljene najelementarnijim naučnim instrumentima, lenjirom i časovnikom, koji su prethodno upoređeni tako da se zna da su instrumenti u raketi A identični instrumentima u raketi B. Analiza počinje u trenutku kad B prolazi pored A, njihovi časovnici pokazuju isto vreme, i u tom trenutku događa se eksplozija obližnje supernove. Ni raketa A ni raketa B još nisu svesne da je zvezda eksplodirala, jer svetlosni talasi još nisu stigli do njih.

Posle kraćeg vremena svetlosni talasi nastali prilikom eksplozije stižu do raketa A i B koje će u tom trenutku biti na rastojanju x. Prema II postulatu posmatrači na A i B vide svetlosne talase koji dolaze istom brzinom u odnosu na njih, tako da ako c predstavlja brzinu svetlosnog talasa za A, a c' za B, onda se može reći da je c=c'. Sada se unesu rastojanja d i d' (između zvezde i posmatrača) i vremena koja pokazuju njihovi časovnici t i t', i analiza produži da bi se uračunalo njihovo međusobno rastojanje, njihova relativna brzina, njihova vremena, brzina svetlosti, itd.

Jednačine koje se dobijaju nazivaju se jednačine Lorencovih transformacija, jer je Lorenc prethodno došao do istih jednačina na osnovu svoje teorije. Koristeći jednačine Lorencovih transformacija možemo sada predvideti rezultate koje će posmatrač sa jedne rakete dobiti za masu, dužinu i td. druge rakete. Kako postulati sadrže rezultate koji su u suprotnosti sa svakodnevnim iskustvom, rezultati koji se dobijaju na osnovu Lorencovih transformacija mogu biti neočekivani i naizgled čudni. Razlog što se Teorija relativnosti, uopšte uzev, smatra neshvatljivom, nije to što je teško razumeti njene rezultate, nego što je u njih teško poverovati.

Specijalna teorija relativnosti:
[ 1 | 2 | 3 | 4 | 5 | 6 | 7 ] Kontrakcija dužine >

 

Ajnštajn za početnike

< Potraga za eterom Opšta teorija relativnosti >
[1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 ]

(jul 2002.)


| Home | Sadržaj | Galaksija | Sunčev sistem | Teorija i praksa |
| Instrumenti | Istorija i tradicija  | Efemeride 2002 |

vrh